organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4-O-Carbonyl-1,2:5,6-di-O-isopropylidene-D-mannitol

Richard Betz, Peter Klüfers* and Moritz M. Reichvilser

Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 23 July 2007; accepted 21 August 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.114; data-to-parameter ratio = 10.0.

The title compound, $C_{13}H_{20}O_7$, the carbonate of a partially protected sugar alcohol, was obtained accidentally in the attempted preparation of an orthocarbonate thereof. The five-membered 1,3-dioxolane rings adopt twist and envelope conformations.

Related literature

For related literature, see: Hough *et al.* (1962); Baker & Sachdev (1963); Mues & Buysch (1990). For analysis tools, see: Cremer & Pople (1975).

Experimental

Crystal data

C₁₃H₂₀O₇ $M_r = 288.29$ Orthorhombic, $P2_12_12_1$ a = 6.0863 (3) Å b = 11.6958 (4) Å c = 19.6816 (8) Å

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: none 3191 measured reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.045 & \text{Only H-atom displacement para-}\\ wR(F^2) = 0.114 & \text{meters refined} \\ S = 1.00 & \Delta\rho_{\text{max}} = 0.16 \text{ e} \text{ Å}^{-3} \\ 1858 \text{ reflections} & \Delta\rho_{\text{min}} = -0.26 \text{ e} \text{ Å}^{-3} \end{array}$

 $V = 1401.02 (10) \text{ Å}^3$

 $0.16 \times 0.04 \times 0.04$ mm

1858 independent reflections

1153 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^{-1}$

T = 200 (2) K

 $R_{\rm int} = 0.059$

Z = 4

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997) and *PLATON* (Spek, 2003).

The authors thank Phillipp Lorenz and Dr Peter Mayer for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2451).

References

Baker, B. R. & Sachdev, H. S. (1963). J. Org. Chem. 28, 2135-2139.

Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Hough, L., Priddle, J. E. & Theobald, R. S. (1962). J. Chem. Soc. pp. 1934–1938.

Mues, P. & Buysch, H.-J. (1990). *Synthesis*, pp. 249–252.

Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3890 [doi:10.1107/S1600536807041244]

3,4-O-Carbonyl-1,2:5,6-di-O-isopropylidene-D-mannitol

R. Betz, P. Klüfers and M. M. Reichvilser

Comment

The title compound, $C_{13}H_{20}O_7$, the carbonate of a partially protected sugar alcohol, 1,2:5,6-di-*O*-isopropylidene-*D*-mannitol, was obtained accidentally on the attempted preparation of an orthocarbonate thereof.

The molecular structure is shown in Fig. 1. The 5-membered 1,3-dioxolane ring O1–C1–C2–O2–C12 adopts a twist conformation on O1–C1 ($Q_2 = 0.324$ (3) Å, $\varphi_2 = 16.7$ (6)°), whereas O5–C5–C6–O6–C22 ($Q_2 = 0.302$ (3) Å, $\varphi_2 = 319.3$ (6)°) shows an envelope conformation on C22. The dioxolane ring O3–C3–C4–O4–C10, which contains the carbonate group, is twisted on C3–C4 ($Q_2 = 0.165$ (3) Å, $\varphi_2 = 57.8$ (11)°). Ring puckering parameters (Cremer & Pople, 1975) were calculated with *PLATON* (Spek, 2003).

The molecular packing is shown in Fig. 2.

Experimental

The title compound was obtained accidentally as the sole product on the attempted preparation of an orthocarbonate by the reaction of dichlorodiphenoxymethane, $(PhO)_2CCl_2$, with 1,2:5,6-di-*O*-isopropylidene-*D*-mannitol in analogy to a literature procedure (Mues & Buysch, 1990). The crude product was recrystallized from boiling ethyl acetate.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined to $U_{iso}(H) = 0.059$ (2) Å².

Due to the absence of significant anomalous scattering the absolute structure factor (Flack, 1983), which is 2.9 with an estimated standard deviation of 1.8 for the unmerged data set, is meaningless. Thus, Friedel opposites (1329 pairs) have been merged. The absolute structure has been assigned to match the known sterochemistry of the starting material 1,2:5,6-di-*O*-isopropylidene-D-mannitol.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Figures

Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. The packing of (I), viewed along [100]. H atoms omitted for clarity.

3,4-O-Carbonyl-1,2:5,6-di-O-isopropylidene-D-mannitol

Crystal data	
$C_{13}H_{20}O_7$	$F_{000} = 616$
$M_r = 288.29$	$D_{\rm x} = 1.367 \ (1) \ {\rm Mg \ m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 13166 reflections
a = 6.0863 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
<i>b</i> = 11.6958 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 19.6816 (8) Å	T = 200 (2) K
$V = 1401.02 (10) \text{ Å}^3$	Needle, colourless
Z = 4	$0.16\times0.04\times0.04~mm$

Data collection

Nonius KappaCCD area-detector diffractometer	1858 independent reflections
Radiation source: rotating anode	1153 reflections with $I > 2\sigma(I)$
Monochromator: MONTEL, graded multilayered X-ray optics	$R_{\text{int}} = 0.059$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200(2) K	$\theta_{\min} = 3.5^{\circ}$

ϕ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -15 \rightarrow 15$
3191 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2 Only H-atom displacement parameters refined $w = 1/[\sigma^2(F_0^2) + (0.0615P)^2]$ Least-squares matrix: full where $P = (F_0^2 + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.045$ $(\Delta/\sigma)_{\rm max} < 0.001$ $wR(F^2) = 0.114$ $\Delta \rho_{\text{max}} = 0.16 \text{ e} \text{ Å}^{-3}$ S = 1.00 $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$ 1858 reflections Extinction correction: none 186 parameters Absolute structure: Primary atom site location: structure-invariant direct Flack parameter: methods

Secondary atom site location: difference Fourier map Rogers parameter:

Hydrogen site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3167 (4)	0.4262 (2)	0.04204 (11)	0.0471 (6)
O2	0.0435 (4)	0.4772 (2)	0.11497 (10)	0.0442 (6)
O3	0.4588 (4)	0.52808 (19)	0.24498 (11)	0.0447 (6)
O4	0.2177 (4)	0.64536 (16)	0.29075 (10)	0.0392 (6)
O5	0.1688 (4)	0.43473 (18)	0.35795 (10)	0.0410 (6)
O6	-0.0359 (4)	0.28634 (17)	0.32210 (11)	0.0440 (6)
O10	0.5768 (5)	0.6762 (2)	0.30616 (13)	0.0634 (8)
C1	0.4190 (6)	0.4462 (3)	0.10539 (15)	0.0433 (8)
H11	0.5558	0.4911	0.0998	0.059 (2)*
H12	0.4537	0.3735	0.1288	0.059 (2)*
C2	0.2473 (6)	0.5135 (2)	0.14394 (14)	0.0361 (8)
H2	0.2686	0.5972	0.1360	0.059 (2)*
C3	0.2486 (5)	0.4882 (2)	0.22009 (15)	0.0370 (8)
Н3	0.2329	0.4042	0.2282	0.059 (2)*

C4	0.0853 (5)	0.5539 (3)	0.26282 (14)	0.0342 (7)
H4	-0.0350	0.5856	0.2338	0.059 (2)*
C5	-0.0096 (6)	0.4859 (2)	0.32170 (15)	0.0389 (8)
H5	-0.0949	0.5374	0.3525	0.059 (2)*
C6	-0.1529 (6)	0.3852 (3)	0.29908 (17)	0.0461 (9)
H61	-0.3003	0.3893	0.3202	0.059 (2)*
H62	-0.1696	0.3842	0.2491	0.059 (2)*
C10	0.4302 (6)	0.6218 (3)	0.28301 (16)	0.0420 (8)
C11	-0.0367 (7)	0.4552 (3)	-0.00416 (16)	0.0527 (10)
H111	0.0049	0.4136	-0.0454	0.059 (2)*
H112	-0.0033	0.5366	-0.0099	0.059 (2)*
H113	-0.1944	0.4456	0.0041	0.059 (2)*
C12	0.0902 (6)	0.4089 (3)	0.05523 (15)	0.0400 (8)
C13	0.0364 (7)	0.2857 (3)	0.0715 (2)	0.0542 (10)
H131	0.1349	0.2582	0.1073	0.059 (2)*
H132	0.0554	0.2389	0.0307	0.059 (2)*
H133	-0.1162	0.2803	0.0871	0.059 (2)*
C21	0.3026 (7)	0.2459 (3)	0.37563 (17)	0.0499 (9)
H211	0.4105	0.2747	0.4084	0.059 (2)*
H212	0.3679	0.2451	0.3301	0.059 (2)*
H213	0.2590	0.1681	0.3883	0.059 (2)*
C22	0.1052 (6)	0.3218 (3)	0.37579 (15)	0.0370 (8)
C23	-0.0157 (7)	0.3221 (3)	0.44255 (17)	0.0547 (10)
H231	0.0792	0.3541	0.4780	0.059 (2)*
H232	-0.0564	0.2437	0.4547	0.059 (2)*
H233	-0.1488	0.3688	0.4384	0.059 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0490 (16)	0.0524 (14)	0.0398 (12)	0.0003 (13)	0.0080 (12)	-0.0053 (11)
02	0.0397 (14)	0.0545 (14)	0.0383 (12)	0.0032 (12)	0.0004 (11)	-0.0122 (11)
03	0.0407 (15)	0.0514 (14)	0.0421 (12)	0.0062 (12)	-0.0042 (11)	-0.0051 (11)
04	0.0464 (15)	0.0292 (11)	0.0420 (12)	-0.0005 (10)	0.0015 (11)	-0.0011 (10)
05	0.0485 (15)	0.0343 (10)	0.0403 (11)	-0.0035 (11)	-0.0062 (12)	0.0049 (9)
06	0.0522 (16)	0.0317 (11)	0.0482 (13)	-0.0018 (11)	-0.0116 (12)	0.0008 (10)
O10	0.0551 (18)	0.0756 (17)	0.0595 (16)	-0.0169 (17)	-0.0102 (15)	-0.0074 (14)
C1	0.041 (2)	0.0480 (19)	0.0414 (17)	-0.0007 (18)	0.0032 (17)	-0.0082 (16)
C2	0.040 (2)	0.0349 (15)	0.0335 (15)	-0.0019 (16)	0.0010 (15)	-0.0020 (13)
C3	0.042 (2)	0.0303 (14)	0.0391 (16)	0.0002 (15)	-0.0035 (15)	-0.0001 (13)
C4	0.0383 (19)	0.0305 (15)	0.0337 (15)	0.0013 (15)	-0.0015 (15)	0.0024 (13)
C5	0.045 (2)	0.0350 (16)	0.0369 (16)	0.0025 (16)	0.0006 (15)	0.0012 (14)
C6	0.045 (2)	0.0381 (16)	0.056 (2)	-0.0002 (16)	-0.0038 (18)	0.0109 (16)
C10	0.046 (2)	0.0435 (18)	0.0367 (17)	-0.0026 (19)	-0.0040 (18)	0.0036 (16)
C11	0.062 (3)	0.057 (2)	0.0394 (17)	0.002 (2)	-0.0045 (19)	0.0043 (16)
C12	0.043 (2)	0.0441 (19)	0.0327 (16)	0.0011 (17)	0.0027 (16)	-0.0075 (13)
C13	0.060 (3)	0.0416 (18)	0.061 (2)	-0.0052 (19)	-0.008 (2)	-0.0011 (17)
C21	0.055 (2)	0.0486 (18)	0.0464 (18)	0.0096 (19)	-0.0025 (19)	0.0013 (17)

C22	0.045 (2)	0.0330 (15)	0.0333 (16)	-0.0022 (16)	-0.0008 (15)	0.0006 (13)
C23	0.064 (3)	0.057(2)	0.043 (2)	-0.002 (2)	0.0130 (19)	0.0072 (16)
Geometric para	meters (Å, °)					
O1—C1		1.413 (4)	C4—I	H4	1.000	0
O1—C12		1.417 (4)	C5—0	26	1.531	(4)
O2—C2		1.429 (4)	C5—I	H5	1.000	0
O2—C12		1.449 (4)	C6—I	H61	0.990	0
O3—C10		1.339 (4)	C6—I	H62	0.990	0
O3—C3		1.447 (4)	C11-	-C12	1.502	(5)
O4—C10		1.331 (4)	C11—	-H111	0.980	0
O4—C4		1.448 (4)	C11-	-H112	0.980	0
O5—C22		1.420 (4)	C11-	-H113	0.980	0
O5—C5		1.430 (4)	C12—	-C13	1.512	(5)
O6—C22		1.424 (4)	C13—	-H131	0.980	0
O6—C6		1.431 (4)	C13—	-H132	0.980	0
O10-C10		1.187 (4)	C13—	-H133	0.980	0
C1—C2		1.512 (4)	C21-	-C22	1.494	(5)
C1—H11		0.9900	C21—	-H211	0.980	0
C1—H12		0.9900	C21—	-H212	0.980	0
C2—C3		1.528 (4)	C21—	-H213	0.980	0
С2—Н2		1.0000	C22—	-C23	1.506	(5)
C3—C4		1.512 (4)	C23—	-H231	0.980	0
С3—Н3		1.0000	C23—	-H232	0.980	0
C4—C5		1.520 (4)	C23—	-H233	0.980	0
C1		106.9 (2)	H61—	-C6—H62	108.9	
C2—O2—C12		108.5 (2)	O10–	-C10O4	125.2	(3)
C10—O3—C3		109.8 (3)	O10—	-C10-O3	123.8	(4)
C10—O4—C4		110.2 (2)	04—0	С10—ОЗ	111.1	(3)
С22—О5—С5		107.8 (2)	C12—	-C11—H111	109.5	
С22—О6—С6		107.4 (2)	C12—	-C11—H112	109.5	
O1—C1—C2		103.0 (3)	H111-		109.5	
O1-C1-H11		111.2	C12—	-C11—H113	109.5	
C2-C1-H11		111.2	H111-	—С11—Н113	109.5	
O1-C1-H12		111.2	H112-	—С11—Н113	109.5	
C2-C1-H12		111.2	01—	С12—О2	105.1	(3)
H11—C1—H12		109.1	01—0	C12—C11	107.8	(3)
O2—C2—C1		104.2 (2)	02—0	C12—C11	109.4	(3)
O2—C2—C3		109.8 (2)	01—0	C12—C13	112.7	(3)
C1—C2—C3		112.8 (3)	02—0	C12—C13	108.1	(3)
O2—C2—H2		110.0	C11—	-C12—C13	113.4	(3)
C1—C2—H2		110.0	C12—	-C13—H131	109.5	
С3—С2—Н2		110.0	C12—	-C13—H132	109.5	
O3—C3—C4		103.2 (2)	H131-	—С13—Н132	109.5	
O3—C3—C2		105.9 (2)	C12—	-C13—H133	109.5	
C4—C3—C2		116.3 (3)	H131-	—С13—Н133	109.5	
O3—C3—H3		110.3	H132-	—С13—Н133	109.5	
С4—С3—Н3		110.3	C22—	-C21—H211	109.5	

С2—С3—Н3	110.3	C22—C21—H212	109.5
O4—C4—C3	102.7 (3)	H211—C21—H212	109.5
O4—C4—C5	108.0 (2)	C22—C21—H213	109.5
C3—C4—C5	114.1 (3)	H211—C21—H213	109.5
O4—C4—H4	110.6	H212—C21—H213	109.5
C3—C4—H4	110.6	O5—C22—O6	104.6 (2)
С5—С4—Н4	110.6	O5—C22—C21	109.5 (3)
O5—C5—C4	108.1 (3)	O6—C22—C21	108.1 (2)
O5—C5—C6	104.8 (2)	O5—C22—C23	110.3 (2)
C4—C5—C6	113.4 (3)	O6—C22—C23	110.7 (3)
O5—C5—H5	110.1	C21—C22—C23	113.4 (3)
C4—C5—H5	110.1	C22—C23—H231	109.5
С6—С5—Н5	110.1	С22—С23—Н232	109.5
O6—C6—C5	104.2 (2)	H231—C23—H232	109.5
O6—C6—H61	110.9	С22—С23—Н233	109.5
С5—С6—Н61	110.9	H231—C23—H233	109.5
O6—C6—H62	110.9	H232—C23—H233	109.5
С5—С6—Н62	110.9		
C12—O1—C1—C2	-35.9 (3)	O4—C4—C5—C6	-179.6 (2)
C12—O2—C2—C1	-9.5 (3)	C3—C4—C5—C6	-66.0 (4)
C12—O2—C2—C3	-130.6 (2)	C22—O6—C6—C5	22.0 (3)
O1—C1—C2—O2	27.4 (3)	O5—C5—C6—O6	-2.6 (3)
O1—C1—C2—C3	146.5 (3)	C4—C5—C6—O6	115.1 (3)
C10—O3—C3—C4	-13.6 (3)	C4—O4—C10—O10	-173.1 (3)
C10—O3—C3—C2	109.1 (3)	C4—O4—C10—O3	7.3 (3)
O2—C2—C3—O3	-179.7 (2)	C3—O3—C10—O10	-175.1 (3)
C1—C2—C3—O3	64.6 (3)	C3—O3—C10—O4	4.6 (3)
O2—C2—C3—C4	-65.6 (3)	C1	30.4 (3)
C1—C2—C3—C4	178.6 (3)	C1	147.0 (3)
C10—O4—C4—C3	-15.2 (3)	C1	-87.0 (3)
C10—O4—C4—C5	105.7 (3)	C2-02-C12-01	-11.9 (3)
O3—C3—C4—O4	16.7 (3)	C2	-127.5 (3)
C2—C3—C4—O4	-98.9 (3)	C2—O2—C12—C13	108.6 (3)
O3—C3—C4—C5	-99.9 (3)	C5—O5—C22—O6	31.8 (3)
C2—C3—C4—C5	144.5 (3)	C5	147.4 (3)
C22—O5—C5—C4	-139.1 (2)	C5—O5—C22—C23	-87.3 (3)
C22—O5—C5—C6	-17.8 (3)	C6—O6—C22—O5	-33.6 (3)
O4—C4—C5—O5	-63.8 (3)	C6—O6—C22—C21	-150.1 (3)
C3—C4—C5—O5	49.7 (3)	C6—O6—C22—C23	85.2 (3)

